AD-A119 721

OHIO STATE UNIV COLUMBUS DEPT OF CHEMISTRY

STUDIES ON THE SYNTHESES OF BORON HYDRIDE SYSTEMS.(U)

DAAG29-81-C-0029

UNCLASSIFIED

ARO-15611.11-CH

END

and

II.82

DTIL

DAAG29-81-C-0029

ARO-15611.11-CH

END

ARO-15611.11-CH

E

"ARD 15611.11-CH

RF Project 762695/713823

Report No....

FINAL

REPORT

By '
THE OHIO STATE UNIVERSITY
RESEARCH FOUNDATION

1314 KINNEAR RD. COLUMBUS, OHIO 43212

)	DEPARTMENT OF THE ARMY U.S. Army Research Office
	P.O. Box 12211
	Research Triangle Park, North Carolina 27709
*****	Contract No. DAAG29-81-C-0029

On STUDIES ON THE SYNTHESES OF BORON HYDRIDE SYSTEMS

ELE
For the period July 1, 1981 - May 31, 1982

Submitted by Sheldon G. Shore

Department of Chemistry

Data July 30, 1982

DIR FILE COPY

82 09 28 020

SECURITY CLASSIFICATION OF THIS PAGE (When Dote Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER 2. GOVT ACCESSION NO. 4D-A1197	3. RECIPIENT'S CATALOG NUMBER			
4. TITLE (and Submitte) Studies on the Syntheses of Boron Hydride Systems	July 1, 1901-May 31, 1902			
	762695/713823			
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(a)			
Dr. Sheldon G. Shore	DAAG29-81-C-0029			
The Ohio State University Research Foundation 1314 Kinnear Road, Columbus, Ohio 43214	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
13. CONTROLLING OFFICE NAME AND ADDRESS U. S. Army Research Office Post Office Box 12211	12. REPORT DATE 7-30-82 13. NUMBER OF PAGES			
Research Triangle Park, NC 27709	8			
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified 15e. DECLASSIFICATION/DOWNGRADING SCHEDULE			
IG. DISTRIBUTION STATEMENT (of this Report)				

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

NA

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

Boron hydride, B₁₀H₁₄, B₄H₁₀, 2-BrB₄H₉, BH₃Cl, BrB₂H₅, Carborane,

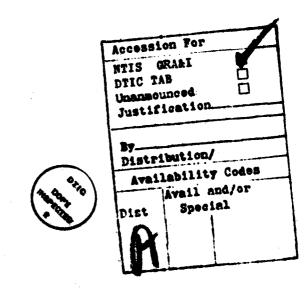
nido-5,6-R,R'C₂B_pH₁₀

Syntheses of the new anion [BH₃Cl], B₂H₆, B₁₀H₁₄, and 2-BrB₄H₉ are discussed. The use of B₅H₉ as a starting point in the preparation of B₉H₁₃L, B₁₀H₁₂L₂ and nido-5,6-RR'C₂B₈H₁₀ is described.

DD TORN 1473 ESTTION OF I NOV 65 IS OBSOLETE

UNCLASSIFIED

SECTIONTY OF ASSISTED THE OF THIS PART / Them Flore Patents


Forward

This report covers the period July 1, 1981 - May 31, 1982. In the time frame cited above we have been concerned with several aspects of Studies on the Syntheses of Boron Hydride Systems. The work described here is an extension of the program which is discussed in an earlier final report: November 1981 No. 761119/711144 for Grant No. DAAG 29-78-G-0112.

In this report we describe the new anion $[BH_3C1]^-$ and how it is employed to improve the yield of $B_{10}^{H}_{14}$ in our "one pot" procedure for preparing $B_{10}^{H}_{14}$ from $B_5^{H}_9$.

Dry syntheses of B_2H_6 and B_2H_5Br are described and the preparation of 2-BrB₄H₉ is considered in several solvents.

Our "one pot" syntheses of higher borane systems have been extended to include several thioether derivatives of the type $B_9H_{13}L$ and bis-ligand derivatives $B_{10}H_{12}(P\phi_3)_2$ and $B_{10}H_{12}(SEt_2)_2$. New preparations of carboranes of the type nido-5,6-R,R'C₂B₈H₁₀ are discussed.

Results and Discussion

1. Preparation and Characterization of the [BH2C1] Ion.

From tensimetric titrations we have demonstrated the formation of the $[BH_2C1]^{-1}$ ion.

[PPN]Cl + 1/2
$$B_2H_6 \xrightarrow{CH_2Cl_2}$$
 [PPN][BH₃Cl] (1)

$$[N(\underline{n}-C_4H_9)_4]C1 + 1/2 B_2H_6 \xrightarrow{CH_2Cl_2} [N(\underline{n}-C_4H_9)_4][BH_3C1]$$
 (2)

$$[N(C_2H_5)_4]C1 + 1/2 B_2H_6 \xrightarrow{CH_2C1_2} [N(C_2H_5)_4[BH_3C1]]$$
 (3)

Under similar reaction conditions there is no evidence for the formation of the analogous ions $[BH_3Br]^-$ and $[BH_3I]^-$.

The salts [PPN][BH₃Cl], [N(\underline{n} -C₄H₉)₄][BH₃Cl], and [N(C₂H₅)₄][BH₃Cl] readily disproportionate in CH₂Cl₂ solution at room temperature to give [B₂H₇], [BH₂Cl₂] and [BH₄]. However in the solid state these salts appear to be stable at room temperature for extended periods of time in the absence of air.

In collaboration with Dr. J. C. Huffman at the Indiana University Molecular Structure Center and Dr. Robert Bau of the University of Southern California, the crystal and molecular structure of [PPN][BH3Cl] has been determined. The [BH3Cl] ion is tetrahedral and the B-Cl distance is the longest observed (2.01Å). This of course suggests a weak bond and suggests that the anion might prove to be a ready source of BH3. This point is elaborated on below.

2. Addition of BH₃ to B_3H_7 and B_9H_{13} via the Anion [BH₃Cl].

The reaction of $[N(\underline{n}-C_4H_9)_4][BH_3C1]$ with BCl₃ results in the abstraction of C1 to give 80-90% yields of B_2H_6 . This result suggested the possibility of using

$$[N(\underline{n}-C_4H_9)_4][BH_3C1] + BC1_3 \longrightarrow 1/2 B_2H_6 + [N_1n-C_4H_9)_4][BC1_4]$$
 (4)

[BH₃Cl] as an external BH₃ source for polyhedral expansion in the absence of a solvent, rather than relying on BH₃ transfer as previously described in our earlier report¹ and publications.^{2,3} This method would eliminate the loss of boron in the polymeric residues suggested in the previously cited material.^{1,2,3} Reactions (5) and (6) below illustrate the stoichiometries used and the proposed

results for BH₃ addition to B_3H_7 and B_9H_{13} respectively.

$$[N(\underline{n}-C_4H_9)_4][B_3H_8] + [N(\underline{n}-C_4H_9)_4][BH_3C1] + 2BC1_3 \longrightarrow$$

$$B_4H_{10} + [N(\underline{n}-C_4H_9)_4][BC1_4] + [N(\underline{n}-C_4H_9)_4][HBC1_3]$$
(5)

$$[N(CH_3)_4][B_9H_{14}] + [N(\underline{n}-C_4H_9)_4][BH_3C1] + 2BC1_3 \longrightarrow$$

$$B_{10}H_{14} + H_2 + [N(CH_3)_4][HBC1_3] + [N(\underline{n}-C_4H_9)_4][BC1_4]$$
(6)

In the case of reaction (4), the predicted yield of B_4H_{10} is not achieved, rather two independent reactions occur to generate B_4H_{10} and B_2H_6 as previously described. 1,2,3 However, in reaction (5) the yield of $B_{10}H_{14}$ obtained is 64% based upon the stoichiometry of the reaction. This yield is nearly 71% if based solely on the boron in $[B_9H_{14}]^-$, thus indicating that reaction (5) appears to be proceeding as proposed. In our usual preparation of $B_{10}H_{14}$ from $B_9H_{14}^-$ the yield of $B_{10}H_{14}$ cannot exceed 50% of the boron in $B_9H_{14}^-$. Additionally, the quantity of B_2H_6 isolated is far less than predicted for the independent reaction of $[BH_3C1]^-$ with $BC1_3$. Further investigations into this system resulted in no further increases in yield of $B_{10}H_{14}$ when $[N(\underline{n}-C_4H_9)_4][BH_4]$ was substituted for $[N(\underline{n}-C_4H_9)_4][BH_3C1]$. Thus the addition of BH_3 to B_9H_{13} is successful to a limited extent.

3. 2-BrB₄H₉ from [B₃H₇Br]

The availability of the salt $[N(\underline{n}-C_4H_9)_4][B_3H_7Br]^4$ suggested the possibility of preparing the 2-bromo derivative of tetraborane (10) through hydride ion abstraction from $[B_3H_7Br]^-$ followed by BH_3 transfer.

When [N(n-C4H9)4][B3H7Br] is reacted with BBr3 in CH2Cl2 at -78°, 2-BrB4H9 and B4H10 are isolated in 15-20% yield each. Other boron containing species isolated include 2-BrB5H8, B2H6, B5H9, BrB2H5, and 1-BrB5H8 (1-10% yield each). The total amount of boron in the volatile products is 60-65% of boron in [B3H7Br]. Since both brominated and non-brominated boranes are obtained and since the solid reaction products contain both [BBr4] and [HBBr3] it appears that both hydride ion and bromide ion are susceptible to abstraction by BBr3. This would result in the formation of both "B3H7" and "B3H6Br" units which could undergo polyhedral expansion by transfer of either BH3 or BH2Br. Additionally, some decomposition must also occur to yield the B2 and B5 species cited above.

Various attempts were made to increase the yield of 2-BrB₄H₉ with respect to the other boranes produced by varying the reaction conditions. Table I summarizes the yields of B₄H₁₀ and 2-BrB₄H₉ obtained and the reaction conditions employed for pertinent reactions. Of particular interest is the observation that B₄H₁₀ production is directly proportional to the number of chlorine atoms in the solvent employed. This result can be rationalized from the standpoint that the solubility of the [BBr₄] salt decreases as a more highly chlorinated solvent is employed. This method for preparing 2-BrB₄H₉ provides a reasonable alternative to the only other reported procedure which involved the reaction of B₄H₁₀ and Br₂ at -15° for 18 hours.

COMPARATIVE YIELDS OF 2-BrB4H9 AND B4H10

Solvent	Temrerature	B4 ^H 10	2-BrB ₄ H ₉
CH ₂ Cl ₂	-78°C	15%	15%
CHC13	0°C	40%	Trace
CC1 ₄	0°C	437	0%

Yield is calculated from boron in B3H7Br.

4. Convenient, Dry Syntheses of B_2H_6 and B_2H_5Br .

Diborane(6) was obtained in 95% yield from the reaction of a vigorously stirred mixture of NaBH $_4$ and BF $_3$ at room temperature and 1 atm. pressure.

3 NaBH₄ + 4 BF₃
$$\longrightarrow$$
 B₂H₆ + 3 NaBF₄ (7)

This synthesis of B_2H_6 differs from the traditional⁵ preparation of B_2H_6 in that an ethereal solvent is not used. Furthermore, the generation of B_2H_6 probably occurs through hydride ion abstraction to give $[HBF_3]^-$ which disproportionates to $[SH_A]^-$ and $[SF_A]^-$.

Through the reaction of LiBH₄ with BBr₃, we have developed a simple preparation of B_2H_5Br in 80% yield. With vigorous stirring of reactants, this reaction occurs at room temperature. This procedure appears to be superior to the conventional 6 method of preparing B_2H_5Br which involves the reaction of

BBr3 with B2H6.

5. Preparation of $B_9H_{13}L$ and $B_{10}H_{12}L_2$ Complexes using B_5H_9 as a Starting Material.

Our final report for Grant No. DAAG 29-78-G-0112 described the use of B_5H_9 as a starting material for the preparation of $B_9H_{14}^-$ in 90% yield and its subsequent conversion to $B_9H_{13}SEt_2$ and $B_9H_{13}P\phi_3$ in effectively "one pot" synthetic procedures. We have extended these procedures to include the preparation of the complexes $B_9H_{13}S(\underline{n}-C_4H_9)_2$, $B_9H_{13}S(\underline{t}-C_4H_9)_2$, $B_9H_{13}^-$ Tetrahydrothiophene, and $B_6H_{13}^-$ Thiophene in yields of about 60%. Thus, we have established practical routes to adducts of the type $B_9H_{13}L$ using B_5H_9 as a starting material.

We have achieved a 65% conversion of $B_9H_{13}P\phi_3$ to high quality $B_{10}H_{13}(P\phi_3)_2$ through the following reaction

$$B_9H_{13}P\phi_3 + BH_3P\phi_3 \xrightarrow{114^\circ} B_{10}H_{12}(P\phi_3)_2 + 2H_2$$
 (8)

The analogous reaction shown below has also been observed giving 10-20% yield of $B_0H_{13}SEt_2$. Optimum conditions for conducting this reaction are currently

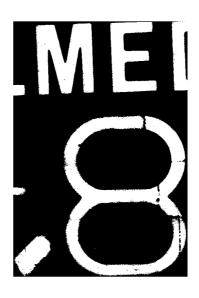
$$B_9H_{13}SEt_2 + BH_3SEt_2 \xrightarrow{\text{reflux}} B_{10}H_{12}(SEt_2)_2 + 2H_2$$
 (9)

being studied on Grant No. DAAG-29-82-K-0112. By the same token current studies also involve conversion of $B_9H_{13}S(\underline{n}-C_4H_9)_2$, $B_9H_{13}S(\underline{r}-C_4H_9)_2$, $B_9H_{13}Tetrahydro-thiophene, and <math>B_9H_{13}Thiophene$ to bis-ligand adducts: $B_{10}H_{12}L_2$. Our ultimate goal is to convert such materials to icosahedral carboranes.

6. Preparation of nido-5,6-R,R'C2BgH10 Carboranes using B5H9 as a Starting Material.

In our final report for Grant No. DAAG-29-78-G-0112 we described a "one-pot" synthesis of $\underline{\text{nido}}$ -5,6- ϕ_2 C₂B₈H₁₀ from B₅H₉. The preparative procedure employed the formation of B₉H₁₃SEt₂ which was then reacted with ϕ CaC ϕ in order to form $\underline{\text{nido}}$ -5,6- ϕ_2 C₂B₈H₁₀. We have since made significant improvements in the synthetic procedure and find that it is not necessary to go through the B₉H₁₃SEt₂ intermediate. Three carboranes have been prepared using the procedure which is outlined below and we have obtained yields of up to 37% carborane based upon boron in the B₅H₉-starting material.

References


- 1. S. G. Shore, "Studies on the Syntheses of Boron Hydrides," Final Report November 1981, No. 761119/711144 for Grant No. DAAG-29-78-G-0112.
- 2. J. B. Leach, M. A. Toft, F. L. Himpsl, and S. G. Shore, <u>J. Am. Chem. Soc.</u>, 1981, <u>103</u>, 988.
- 3. M. A. Toft, J. B. Leach, F. L. Himpsl, and S. G. Shore, <u>Inorg. Chem.</u>, 1982, 21, 1952.
- 4. G. E. Ryschkewitsch, and V. H. Miller, J. Am. Chem. Soc., 1975, 97, 6258.
- 5. J. Dobson and R. Schaeffer, Inorg. Chem., 1965, 4, 593.
- 6. H. I. Schlesinger, H. C. Brown, and A. B. Burg, <u>J. Am. Chem. Soc.</u>, 1931, 53, 4321.

Publication

"New Systematic Syntheses of Boron Hydrides via Hydride Ion Abstraction Reactions: Preparation of B₂H₆, B₄H₁₀, B₅H₁₁, and B₁₀H₁₄", <u>Inorg. Chem.</u> 1982, <u>21</u>, 1952.

Per sonnel

Dr. Sheldon G. Shore
Dr. Simon Boocock
Mark A. Toft
Steven Lawrence
Kenneth Gilbert
Michael Banks

